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Abstract: This paper proposes an efficient power management approach for the 24 h-ahead optimal
maneuver of Mega–scale grid–connected microgrids containing a huge penetration of wind power,
dispatchable distributed generation (diesel generator), energy storage system and local loads.
The proposed energy management optimization objective aims to minimize the microgrid expenditure
for fuel, operation and maintenance and main grid power import. It also aims to maximize the
microgrid revenue by exporting energy to the upstream utility grid. The optimization model considers
the uncertainties of the wind energy and power consumptions in the microgrids, and appropriate
forecasting techniques are implemented to handle the uncertainties. The optimization model is
formulated for a day-ahead optimization timeline with one-hour time steps, and it is solved using the
ant colony optimization (ACO)-based metaheuristic approach. Actual data and parameters obtained
from a practical microgrid platform in Atlanta, GA, USA are employed to formulate and validate
the proposed energy management approach. Several simulations considering various operational
scenarios are achieved to reveal the efficacy of the devised methodology. The obtained findings show
the efficacy of the devised approach in various operational cases of the microgrids. To further confirm
the efficacy of the devised approach, the achieved findings are compared to a pattern search (PS)
optimization-based energy management approach and demonstrate outperformed performances
with respect to solution optimality and computing time.

Keywords: ant colony optimization; energy management; microgrids; optimization; pattern search
optimization; renewable energy; wind power; uncertainty

1. Introduction

The increasing deployment of distributed generations (DGs), the advantage of renewable energy
in reducing carbon emissions, the intermittency of renewable generations, the advent of advanced
controllers and the need to have a more reliable and resilient power grid are some of major causes for
the ongoing energy transition reforms globally [1–3].

A microgrid (MG) is the assemblage of integrated electricity consumers, distributed generations
(DGs) and distributed energy storages (DESs) at a distribution grid voltage level with clear electrical
margins. The DGs can be the conventional or fuel-fired dispatchable power resources, such as a diesel
generator, microturbine, fuel cell and other related energy sources [4]. The DGs can also contain
renewable energy resources (RESs)—for example, wind power generation, photovoltaic (PV) solar
generation, biomass and other technologies. While the distributed sources (DSs) can include batteries,
flywheels and super-capacitors. Microgrids have a black starting ability and can function either in

Processes 2020, 8, 1086; doi:10.3390/pr8091086 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr8091086
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/8/9/1086?type=check_update&version=2


www.manaraa.com

Processes 2020, 8, 1086 2 of 15

island mode or in grid-coupled mode [5]. They are not coupled with the upstream utility network
when operating in the island mode. However, in the grid-coupled mode, MGs function in connection
with the utility grid and exchange (buy or sell) power with the main grid.

Grid-coupled microgrids can export or import electrical energy to/from the larger electricity
network. The power exchange with the upstream electricity network has generally been traded with
a static, presettled price. Nevertheless, with the recent advent of smart sensor products and technology,
it has become possible to precisely measure power generation and demands instantaneously or in
real-time. This has created the opportunity for the change to time-of-use dynamic pricing schemes
for electricity trading nowadays [6]. Well-established control techniques that can integrate a number
of generation resources and storage devices in a microgrid framework are developing to provide
electricity users access to obtain sustainable and secure electric power nearby [7,8]. It also paves the
way for selling energy during excess power production or at expensive-price hours and buying energy
during production shortage or cheap-price hours.

An energy management system (EMS) is a fundamental component of MG control and operational
supervision. It takes input information from the generation sources, energy storage devices, load demands
and main grid to properly allocate the microgrid energy resources (or decide the amount and duration of
energy utilization). If this EMS decision is performed by solving some desired objective function (it can
be the minimization of cost or maximization of profit), it is called an optimal EMS. The power-trading
advancement inspires microgrid aggregators to adjust their power-exchange engagements with the
upstream grid based on time-of-use dynamic pricing schemes in order to reduce power generation costs
(fuel expenses), guarantee the enhanced utilization of RESs and DSs and improve the energy-trading
profit. To accomplish these objectives, robust and optimal EMS should be implemented and integrated
in the microgrid control architecture [6,9–11].

There have been several research works, by various individuals and institutions, on microgrid
EMS in the previous couple of years. These works on microgrid EMS have had different objectives,
configurations, scenarios and contexts. Some of these works are presented below.

A sensitivity study that augmented EMS, considering the rating of the energy storage system
(ESS) and the growing trend of electric loads, was proposed for a microgrid system in Taiwan [12].
It aimed to search the optimal operation points of the microgrid energy resources for maximum profit.
The EMS for optimal energy trading between two interconnected microgrid systems was presented
in [13]. The objective was to minimize the power generation and transportation costs. In this work,
centralized versus decentralized control schemes were investigated, employing iterative approaches
and convex optimization techniques.

The work proposed in [14] developed an EMS to find the operating power set points of power
sources in an MG. The work was based on an artificial neural network (ANN) and emphases to lower the
total power generation expense of a MG that was involved in energy trading with the main electricity
grid. Livengood [15] proposed a power management device known as an energy box to manage the
electricity consumption of residential communities in a real–time dynamic electricity pricing scenarios.
In this work, a stochastic dynamic program was used to solve the EMS objective problem using
predictions of the electricity demand, meteorological variables and electricity price. The EMS decisions
were the charging/discharging power of the ESS and amount of main grid import/export power.

An EMS with a hierarchical optimization framework was implemented in [16]. It focused on
reducing the power generation spending and maximizing the power trading profit of a MG participating
in a wholesale electricity-trading platform.

An optimal EMS model implemented employing a mixed-integer-linear-program (MILP) was
formulated in [17] for minimizing operation expenditures in community microgrids in a dynamic
price electricity market. The microgrid consisted of heating/cooling demands, ESS and dispatchable
demands. Malysz [18] described an online power management technique to economically operate ESS
devices of grid-coupled microgrids. The technique used a MILP described over a rolling scheduling
period, employing forecasted electric loads and renewable power productions.
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A genetic algorithm (GA)-based EMS [4] and modified particle swarm optimization (MPSO)-based
EMS [5] were proposed for isolated microgrids containing multiple DGs and DSs. These EMS were
targeted to reduce the operation costs of the MGs and effectively utilize the renewable and energy
storage devices based on predictions of the electricity demand and renewables. References [5,7]
proposed optimal EMS configurations depending on the prediction information of the electricity
demands and renewable power productions for grid-connected microgrids in a variable electricity
price environment. The proposed optimization problems were aimed to maximize profit and solved
using the regrouping particle swarm optimization (RegPSO) technique.

Most of the aforementioned research works on microgrid energy management considered an
ESS with one storage unit. The possible potential benefit of a microgrid ESS with more than one
storage devices has not been investigated. Besides, the microgrids considered did not include
multiple and integrated energy resources. Furthermore, the optimization techniques used to solve
the EMS optimization problems did not ensure a global optimum solution, which, in turn, obstructed
the exploitation of the maximum benefit of the microgrid in the power trading with the upper
utility network.

In this paper, we propose an efficient power management technique for the 24 h-ahead optimal
operation of mega-scale grid-coupled microgrids that consists of wind energy, a diesel generator,
an energy storage system with several units and local (critical and noncritical) loads. The major target
of the devised energy management methodology is to reduce the microgrid expenditure for fuel,
operation and maintenance and main grid power import. It also targets maximizing the MG profit
by exporting electricity to the upstream utility network. The optimization framework considers the
stochastic ties of the wind power and electricity consumption in the MG, and pertinent predictions
are employed to manage the stochastic ties. The optimization model is formulated for the 24 h-ahead
scheduling period with a one-hour resolution, and it is solved using the ant colony optimization
(ACO)-based meta-heuristic technique. Actual data and parameters obtained from an operating
MG platform in Atlanta, GA, USA are employed to formulate and validate the proposed energy
management approach. To assess and compare the efficacy of the devised method, another heuristic
technique called a pattern search (PS) was also developed to obtain the EMS solution. The ACO
was able to obtain the global best solution of the microgrid EMS problem. In addition, we chose
ACO, as it has few parameters to update during the optimization process compared to other AI
methods. The main contribution of the paper is the optimization formulation of microgrids considering
the uncertainties of the renewable and load demands using integrated forecasting tools. From the
optimization point to point, the contribution of the paper lays in implementing the ACO to solve such
microgrid energy management optimization problems.

The arrangement of the other sections of the paper is described below. Section 2 outlines the
case study microgrid and the proposed EMS optimization model. Section 3 describes the devised
EMS framework and the working mechanism of the ACO. The simulation findings and comparative
analysis are presented and discussed in Section 4. The study is summarized in Section 5.

2. Case Study Microgrid Framework and Proposed EMS Optimization Model

2.1. Microgrid Framework—Case Study Microgrid

The case study microgrid delivers power to various loads in an industrial park. The schematic
illustration of the MG configuration is depicted in Figure 1. It contains wind power, diesel generator
and ESS with two storage units. The ESS devices are a vanadium redox battery (VRB) and lithium-ion
battery (Li–Ion). The MG is coupled with the upstream electricity network via a 10-kV busbar at the
Point of Common Coupling (PCC). The real parametric values of the MG elements depicted in Figure 1
are employed in this work.

The EMS optimization problem, based on the case study microgrid framework, will be formulated
in the following subsections. The MG operates in the grid-coupled mode. It can either export electricity
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to the upstream utility grid or import electricity from the utility power network. The MG EMS targets
minimizing the total operating cost, consisting of the fuel expense, operation and maintenance (O&M)
expense and grid power purchasing expense. Conversely, the EMS targets to maximize the profit that
equals the income due to the power export to the utility grid minus the fuel and O&M costs.

Processes 2020, 8, x FOR PEER REVIEW 4 of 15 

 

EMS

10kV AC 2000 kW Wind
300kW*3h 

Li-Ion Battery

300kW*4h VRB

600kW 

Diesel Generator

Main Grid

400V AC

10kV AC PCC

Critical Loads

Noncritical Loads

Reserve

Power Line

Communication Line
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The decision variables are the charging/discharging powers and state of charges (SOCs) of the ESS
devices, the generation from the diesel generator and the amount of energy trading with the upstream
utility gird (i.e., grid power).

2.2. Objective Function

The optimization problem is formulated based on the following, the input information [19,20]:

• Electricity demand prediction
• Wind power prediction
• Electricity price prediction
• MG system data and component parameters

This information should be known in advance for the EMS to execute the desired optimal decisions.
As described above, the EMS aims to reduce the expense of buying electricity from the upstream

utility network (or exploit the profit of selling electricity to the utility network), the fuel cost and O&M
costs in the MG. The objective function is formulated as follows:

Min
N∑

t=1

∆T
{

c(t)Pg(t) +
G∑

k=1

(
Fk(Pk(t))·ξk(t) + SUk(t) + SDk(t) + cOM,k(t)Pk(t)

)
+cOM,w(t)Pwind(t) +

S∑
u=1

cOM,u(t)PESS,u(t)
} (1)

where N is the scheduling horizon that equals 24 for the day-ahead hourly optimization framework;
∆T is the duration of the time steps that equals one hour for the hourly optimization model; c(t) is
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the electricity price (forecasted or prespecified) at time t, and it equals the purchasing price when
the microgrid imports electricity from the upstream utility network and the selling price when the
microgrid exports electricity to the main grid; Pg(t) is the electricity of the utility grid—the sign
convention here is that Pg(t) is positive when the MG purchases electricity, negative when the MG
exports power and zero when no electricity is being transferred between the MG and upper utility
network; G is the number of dispatchable DGs in the MG; Pk(t) is yield power of dispatchable DG k
and Fk is fuel cost function of dispatchable DG k, and it is defined as follows for the diesel generator [8]:

Fk
(
Pk(t)

)
= akPk(t)

2 + bkPk(t) + ck (2)

where ak, bk, and ck are the generator cost function parameters; ξk(t) is the commitment status of DG k,
and its value is 1 if the DG is operating and 0 if the DG is off and SUk(t) is the startup cost of DG k,
and it is expressed below.A

SUk(t) =

SU, if ξk(t) − ξk(t− 1) = 1

0, otherwise
(3)

where SU is a fixed startup cost, and SDk(t) is the shutdown cost of DG k, and it is described below.

SDk(t) =

SD, ifξk(t) − ξk(t− 1) = −1

0, otherwise
(4)

where SD is a fixed shutdown cost, cOM,k(t) is the O&M expense of DG k, cOM,w(t) is the O&M expense
of the wind plant, Pwind(t) is the predicted wind power, S is the quantity of the ESS devices, cOM,u(t) is
the O&M expense of the ESS device u and PESS,u(t) is the charge/discharge power of the ESS unit u
at time t. The sign convention here is that PESS,u(t) is positive while the storage devices discharge,
negative while they charge and zero when the ESS is not in operation.

2.3. Constraints

The objective problem described above is subjected to constraints formulated in the next subsections.

2.3.1. Power Limits of Dispatchable DGs

Pmin
k (t) ≤ Pk(t) ≤ Pmax

k (t) (5)

where Pmin
k (t) and Pmax

k (t) are the lower and upper yield power restrictions on dispatchable DG k,
respectively. This constraint is the manufacturer power generation capacity of the DGs.

2.3.2. Power Exchange Limits

− Pmax
g (t) ≤ Pg(t) ≤ Pmax

g (t) (6)

where Pmax
g (t) is the maximum permissible electricity exchange between the MG and the main electricity

network. This constraint represents the physical limit (capacity) of the switch and transformer
connecting the microgrid and the main grid.

2.3.3. Power Balance Constraint
G∑

k=1

Pk(t) +
S∑

u=1

PESS,u(t) + Pwind(t) + Pg(t) = Pl(t) (7)

where Pl(t) is the predicted electric load of the MG. This constraint is based on the power system stability
concept where the sum of all power generations should be equal to the sum of all power demands.
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2.3.4. Power Limits of ESS Devices

Pmin
ESS,u(t) ≤ PESS,u(t) ≤ Pmax

ESS,u(t) (8)

where Pmin
ESS,u(t) and Pmax

ESS,u(t) are the lower and upper charging/discharging power of the ESS unit u,
respectively. This constraint designates the manufacturer charging and discharging power limits of the
energy storage devices.

2.3.5. Dynamic Operation of ESS Units

SOCESS,u(t + 1) = SOCESS,u(t) −
ηESS,u(t)PESS,u(t)

CESS,u
(9)

SOCmin
ESS,u(t) ≤ SOCESS,u(t + 1) ≤ SOCmax

ESS,u(t) (10)

where SOCESS,u(t) is the state of charge of the ESS device u, ηESS,u(t) is the charging/discharging
efficiency of the ESS device u, CESS,u is the storage capacity of the ESS unit u and SOCmin

ESS,u(t) and
SOCmax

ESS,u(t) are the lower and upper SOCs of the ESS unit u at time t. The constraint in Equation (9)
expresses the state of charge dynamics of the energy storage device while charging and discharging.
The state of charge increases while charging and decreases during discharging. The constraint in
Equation (10) denotes the manufacturer-designed storage capacity of the energy storage devices.

Therefore, the decision variables that the EMS optimizer determines are Pg(t), Pk(t), PESS,u(t) and
SOCESS,u(t) for all t, k and u.

3. Proposed Optimization Solution Approach

The focus of the proposed energy management is to execute safe 24 h-ahead hourly decisions for
economic maneuvers of the microgrid. The EMS considers the volatility of renewables, electric loads
and electricity prices and uses appropriate forecasts for these values. It also takes into account the
fuel expense, O&M costs, various operational and design constraints and system parameters. Figure 2
depicts the schematic representation of the proposed EMS configuration showing the information
exchange into and out of the EMS.
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Figure 2. Proposed microgrid energy management system (MG EMS) configuration. SOC: state of
charge and ESS: energy storage system.
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Ant Colony Optimization (ACO)

The ACO is employed, in this study, for solving the EMS optimization problem formulated in
Section 2. The ACO belongs to artificial intelligence (AI)–based modern optimization techniques. It is
a likelihood optimization tool to solve functions that are described with graphical search routes. It was
stimulated by the activities of ants to search the best routes of food destinations.

The ACO has been broadly used in computer technology and operation researches [21–23].
By mimicking the way real ants communicate each other, the ACO algorithm operates based on the
pheromone exchanges among artificial ants [24]. Artificial ants designate population-based modern
optimization methods inspired by the behavior of real ants. The combination of artificial ants and
searching techniques have come to be one of the solution approaches for plenty of problems consisting
of certain sorts of graphs—for example, vehicles and internet routings.

The brief working mechanism of the ACO algorithm is presented as follows. First, the ACO forms
a graph through optimization or decision variables, and multiple ants are randomly placed in n nodes
(places). The places visited by the ants are recorded by the list reca. The reca is established for every ant
a. The initial pheromone intensity ζij(0) is fixed at zero from all sides. The ants can prefer the next
node based on the pheromone intensity in all sides of that node. The likelihood ρa

i j(t) that the ants
travel from parameter i to j at the iteration is formulated below.

ρa
i j(t) =


ζαi j(t)·η

β
i j(t)∑

q<reca ζ
α
iq(t)·η

β
iq(t)

, j < reca

0 , otherwise

(11)

where ηij is a heuristic memo that is computed as 1/di j, where dij is the Euclidean norm of the space
from parameter i to j, ζij(t) is the pheromone intensity of the path from parameter i to j at iteration
t and α and β are the memo heuristic weight and expectation heuristic weight applied to assign the
coefficients for heuristic information and pheromone intensity. While the ants complete the travels,
the memo (information) intensity on each path is updated by the following expression.

ζi j ← (1− p)·ζi j + p·
m∑

a=1

∆ξa
i j (12)

where p ∈ (0,1] is the weight parameter known pheromone-evaporation ratio, and ∆ζa
i j is the pheromone

enhancement over the route from parameter i to j during the travels, and it is defined below.

∆ζa
i j =


Q
La

, (i, j) ∈ route of a

0 , otherwise
(13)

where Q is a fixed term called pheromone strength, and La is the path distance of ant a. The ACO
iteration terminates when all the ants reach the same solution. Figure 3 illustrates the ACO algorithm
flowchart. The parameters of the ACO algorithm used in the study are given in Table 1.
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Table 1. Ant colony optimization (ACO) parameters. EMS: energy management system.

Parameter Value

# of iterations 100
# of variables Number of EMS decision variables
Number of ants 20
Initial pheromone 0
Information heuristic coefficient 1.0
Expectation heuristic coefficient 1.0
Pheromone intensity 2
Pheromone evaporation 0.9

4. Simulation Results and Discussions

Case Study

A large-scale grid-connected microgrid containing a 2000-kW wind generator, 600-kW diesel
generator and 2100-kW·h ESS (300-kW·4-h VRB and 300-kW·3-h Li–Ion battery) is considered as a case
study microgrid platform in this paper. It is a practical microgrid framework in Atlanta, GA, USA,
which is designed to supply electricity to industrial park loads with a peak aggregate capacity of
3000 kW.

The lowest and peak SOC limits of the ESS devices are set as 20% and 100%, respectively.
The initial SOCs (at 00:00 or 12:00 a.m.) of the ESS devices are assumed to be 20%. The maximum
charging/discharging power of the ESS units is taken as 300 kW. The ideal charging and discharging
efficiency (100%) is assumed. The diesel generator maximum generation is set as 600 kW, and its
parameters are given in Table 2. The maximum grid power exchange is set as 4000 kW, which equals
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the capacity of the grid-coupling transformer. SU is a fixed startup cost of the diesel generator. SD is
a fixed shutdown cost of the diesel generator.

Table 2. Diesel generator parameters.

Parameter Unit Value

a ($/kWh)2 0.00025
b $/kWh 0.0156
c $/h 0.3312
SU $/h 0
SD $/h 0

SU is a fixed startup cost of the diesel generator. SD is a fixed shutdown cost of the diesel generator.

Several scenarios of the generation and load demands have been investigated to validate the
proposed EMS optimization approach based on the information of the case study microgrid. However,
for the purpose of illustration and summarizing the findings, the performance of the proposed approach
will be discussed next based on a single-day scenario. The 24-ahead predictions of the wind power
and electricity demand are depicted in Figures 4 and 5, respectively.
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The electricity price is shown in Figure 6. The price data is the actual energy cost of industries
and big institutions in Atlanta, GA, USA. It is shown that the power-selling bill to the upstream utility
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network is constant through the operating day, while the electricity purchasing bill from the upstream
utility network is dynamic (time-of-use pricing scheme) within the day and has three step-prices within
a day (low price period, moderate price period and peak price period).
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Table 3 specifies the parameters associated with the O&M expenses for the various components of
the microgrid.

Table 3. Operation and maintenance (O&M) cost parameters for various microgrid components. VRB:
vanadium redox battery and MG: microgrid.

MG Component O&M Cost (c$/kWh)

Wind generator 0.3767
Diesel generator 0.5767
VRB 0.003
Li-Ion battery 0.0015

Figure 7 depicts the ACO-based optimal solution for the formulated EMS objective function. The
associated SOCs of the ESS devices are also illustrated in Figure 8.
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As clearly observed in Figures 4–8, during the time interval (00:00, 7:00) or (12 a.m., 7 a.m.)
the produced wind power cannot deliver the full electricity consumption. However, the utility
electricity bill is cheapest in this time interval, and therefore, the MG purchases power from the
upstream utility network to support the wind generation to supply the load demand and charge the
ESS. The diesel generator also supplies power to support the wind generation in this period. The ESS
devices continuously charge and become full in this period.

In the period (7:00, 10:00) or (7 a.m., 10 a.m.), the wind power generation increases and becomes
more than the load demand. The ESS units are at their full charge state in this time. Hence, the MG
exports the excess energy from the wind power and ESS units in this period and earns profit. The diesel
generator stops producing to lower the fuel expense, in this period, as there is excess renewable
power production.

During the period (10:00, 15:00) or (10 a.m., 3 p.m.), which is the peak electricity price time interval,
the microgrid still has more surplus electricity due to more production by the wind plant. Thus, the
MG still keeps selling electricity to the upper utility network and charges the energy storage devices.
The diesel generator does not produce power in this period, since there is still excess renewable power
production in the MG.

During the period (15:00, 19:00) or (3 p.m., 7 p.m.), the wind power generation decreases and
becomes lower than the load demand. The ESS units are at full in this period, and the electricity bill is
medium. The microgrid supplies the load demand in this period using the generations from the ESS
units and the dispatchable DG, in addition to the wind generation. The MG neither buys nor sells
power from/to the utility network in this period.

The wind power generation increases again in the period (20:00, 23:00) and becomes greater than
the microgrid electricity consumption. The microgrid exports the surplus generation to the main grid
and charges the ESS devices in this period. The diesel generator power is zero in this period to lower
the fuel expense, since there is plenty of renewable power production in the MG

Figure 9 shows the PS-based solution of the microgrid EMS optimization problem for the case
study microgrid.

The hourly power production fuel cost comparison between the two EMS optimization approaches
is shown in Figure 10. It is shown that the ACO-based EMS optimization solution has resulted in lower
fuel costs in most of the operating hours of the day.
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The hourly main grid power purchasing cost comparison between the two EMS optimization
methods is shown in Figure 11. It is observed that the ACO-based EMS optimization solution has
given lower purchasing costs in most of the operating hours of the day.Processes 2020, 8, x FOR PEER REVIEW 13 of 15 
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As it is shown in Figures 10 and 11 above, the fuel cost and power purchasing cost are almost
zero, as the microgrid has sufficient renewable energy production from the wind during this period.

The comparison of the hourly income of exporting electricity to the upstream utility network
between the two EMS optimization techniques is shown in Figure 12. It is clearly shown that the
ACO-based EMS optimization solution has achieved a higher income in several hours of the day.
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Table 4 presents the daily power generation fuel cost, grid power purchasing cost and power-selling
income by both EMS optimization solutions. It is observed in the table that the proposed ACO-based
EMS solution has achieved a lower total fuel cost and grid power purchasing expense and higher total
power selling income.

Table 4. Daily cost and income summary. PS: pattern search.

Solution Approach Total Daily Cost and Income ($)

Fuel Cost Grid Power Purchasing Cost Grid Power Selling Income

ACO 423.74 180.83 249.56
PS 587.12 186.03 215.58

Table 5 presents the computational time elapsed by both methods to obtain their solutions using
the MATLAB/Simulink software (MATLAB2016a, MathWorks.lnc, Natick, MA, USA) platform on a PC
with an Intel core i7 CPU, 4.0 GHz processor and 8GB RAM. The ACO-based method has given the
optimal solution within a shorter computation time.

Table 5. Computation time comparison.

Solution Approach Time (s)

ACO 9.52
PS 17.36

5. Conclusions

The optimal energy management approach for a wind-diesel generator ESS microgrid operating in
the grid-connected mode was devised based on the ACO algorithm in this paper. The devised approach
considers the volatility of wind generation and electricity consumption in the MG, and suitable
24 h-ahead predictions have been used to manage the volatilities. The experimental findings have
verified the performance and benefits of the proposed microgrid EMS approach. The approach has
achieved lower fuel expenditure and reduced costs of buying electricity from the upstream utility
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network. It has also resulted in a higher income from the electricity export to the upstream utility
grid. The obtained solution has shown effective utilization of the renewable generation and ESS
devices. The obtained simulation results have been compared with the PS-based EMS solution and gave
outperforming performances with respect to cost, income and computation time. Thus, the obtained
numerical results and illustrative demonstrations verify that the proposed EMS approach is effective
and robust for the day-ahead power control of MGs with multiple energy resources and storage units.
Stochastic energy management with a more robust representation of the uncertainties of the renewable
and load demands will be the future research direction and extension of the findings of this paper.
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